Population Dietary Salt Reduction and the Risk of Cardiovascular Disease – New Statement

Statement from the British Hypertension Society

August 2016

In June 2011 the British Hypertension Society, after appraising the quality of publications questioning the appropriateness of population salt reduction, issued a statement supporting the implementation of national and global programmes of moderate reduction in salt intake. Today, the Society publishes a new statement in light of more recent publications.

Raised blood pressure (BP) is the first cause of death and disability in adults worldwide, mainly due to cardiovascular disease (CVD). The risk of CVD increases progressively with increasing BP. However, the majority of CVD death and morbidity attributable to BP occur at level around or below 130/80 mmHg, because there are so many individuals in the population with this BP. Clinical guidelines would not treat the majority of these individuals with drugs. Furthermore, there is a graded relationship between BP and CVD down to at least 115/75 mmHg. Therefore a population-approach through non-pharmacological measures (diet and life-style) is the most feasible option, recommended by the World Health Organization and adopted under a UN Resolution of the 66th World Health Assembly in 2013.

High salt intake is associated with high blood pressure and a moderate reduction in salt consumption causes a significant reduction in blood pressure. Furthermore, in well-conducted cohort studies and in few intervention trials, a lower salt consumption is associated with reduced cardiovascular events.

A recent publication in The Lancet has reported that a low salt intake is associated with a high risk of CVD. The paper methodology suffers from flaws that have been repeatedly addressed in the medical literature in recent years and that are ignored.

First, the use of morning urine fasting samples’ sodium concentrations extrapolated to 24h urinary sodium excretion using the Kawasaki formula is an inappropriate method for estimating salt intake in individuals. The authors’ reference to their validation, critiqued at the time of its publication, neglects the presence of a significant bias when estimating individuals’ sodium excretion as shown in the Bland-Altman plots, results superimposable to other validations. They also do not mention that a similar validation in the Chinese cohort of the PURE study presents the results with less confidence. The authors insist on the concept (uncritically repeated in the Editorial) that the method could be useful to assess group means. However, they use data on individuals when assessing risk prediction in a cohort study design. This is misleading as it has been long established that several 24h urine collections are needed to approximate an individual’s salt intake with a high degree of confidence (i.e. within 10%) and without bias. In contrast, cohort studies that use the method of repeated 24h urine collections to assess salt intake, show beyond doubt a linear graded relationship between sodium excretion and cardiovascular outcomes with no increase at lower sodium intakes.
Second, the present study is a republication of previous data from the ONTARGET and TRANSCEND Trials19 and from the PURE Study20 with the addition of EpiDREAM, screenees of the DREAM Trial. Not surprising, the results in this ‘larger’ sample are confirmatory of their previous results. There are several considerations to make: the authors split a continuously distributed biological variable in the population (blood pressure) in a biological meaningless dichotomy of ‘hypertension’ and ‘normotension’. By doing that, they reduce the statistical power of detecting relationships, particularly when studying trends. A similar mistake was made by Taylor et al.21 leading to misleading conclusions, then corrected by a proper re-analysis of data6.

An important point is the consistent use of sick populations and patient groups to study the implications of a moderate reduction in salt consumption in the general population. The ONTARGET/TRANSCEND study selected 28,800 participants from high risk patients to undergo randomized clinical trials of anti-hypertensive treatments. Patients were old (66.5±7.2 yrs, and 2.4 years older in the low sodium group), 71% were men of white European background (but the low sodium group included 54% women), all with significant previous disease (48% with MIs, 21% CVAs, 70% hypertension and 37% diabetes), all highly medicated with beta-blockers (57%), diuretics (29%), calcium channel blockers (35%) and ~75% on blockers of the renin-angiotensin system. More interesting the proportion of patients on diuretics was higher in both the low (41%) and the high (43%) sodium groups (Table 119). The reported higher cardiovascular mortality in the low sodium group was, in fact, only detected in the composite outcome of total CV death (Table 219). This was exclusively accounted for by excess heart failure in this group, but not excess MI, stroke or non-CV death. Taken together, the results suggest that the overrepresentation in the low sodium group of patients at high risk of heart failure, more likely to take diuretics and at higher risk of death explains the high mortality detected in that group (reverse causality). Similar attention should be given to the PURE Study, an on-going epidemiological cohort study that has enrolled over 156,000 individuals in 17 countries. The sodium study only reported on 102,000 participants (65% of the original cohort) who were able to provide a urine sample. Compared to the overall original cohort, the sodium cohort had fewer participants from India (5 vs 18%) and more from China (42% v 30%), with unbalanced distribution across sodium groups (Table 120). The low sodium group was 2.8 years older, had fewer men (29.6 v 58.1%), fewer participants from Asian ancestry (33.8 v 73.0%), more with history of cardiovascular disease (9.2 v 7.1%) and diabetes (10.6 v 8.4%), and a greater proportion of people on regular medications, suggesting the presence of self-selected sicker participants in the low sodium group. These unbalances are the likely result of self-selection bias and incorrect assessment of sodium intake. Studies with more stringent quality features have been able to avoid such biases and have obtained more reliable results5. Finally, the EpiDREAM cohort screened people at high-risk of type 2 diabetes, the majority of non-European ethnicity, over 70% obese women, with high proportion of treated individuals22. None of these studies’ results can be generalized to inform current public health strategies for a moderate reduction in sodium consumption in populations or to be considered of good quality to support a causal relationship between low sodium intake and increased cardiovascular mortality23.

In conclusion, the evidence supporting global actions for a moderate reduction in salt consumption to prevent cardiovascular disease is strong and such studies should not overturn the concerted public health action to reduce salt intake globally.

 Prepared by Prof FP Cappuccio, Vice-President, on behalf of the British Hypertension Society’s Guidelines and Information Service Working Party.
References

2. Sixty-sixth World Health Assembly follow-up to the political declaration of the high-level meeting of the General Assembly on the Prevention and Control of Non-communicable Diseases. 25 May 2013. Available at: http://www.who.int/chp/nutrition/action_plan/nutrient_sodium.pdf
13. Campbell N. Validation and comparison of three formulae to estimate sodium and potassium excretion from a single-morning fasting urine compared to 24-h measures in 11 countries. J Hypertens 2014; 32: 2499-500
15. O’Brien E. Salt – too much or too little? Lancet 2016; May 20; on-line